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Microprobe Applications

A Characteristic X-ray Fluorescence Correction for
Thin-Film Analysis By Electron Microprobe
R. A. Waldo

The characteristic x-ray fluorescence correction in most thin film systems is negligible so no significant error usually
results from its omission. Nevertheless, some cases exist where uncertainty about the size of the fluorescence correction
may result in significant errors in the analytical results. Examples include films containing elements which would have a
significant fluorescence contribution if present in bulk form, and film systems which might mistakenly be treated with
bulk correction models because the films are thicker than the electron penetration depth.

Several characteristic fluorescence corrections for thin film systems are described in the literature..1=5 Most,
however, are limited in scope and application; use approximations; or only evaluate one-third or two-thirds of the triple
integral in the fluorescence intensity equation with the remaining integrals to be evaluated by numerical methods.

de Boer® developed a comprehensive procedure to calculate the fluorescence correction for the x-ray fluorescence
(XRF) analytical technique. He showed that the triple integral equations can be solved exactly for the general case of
the exciting and excited element being in any layer. In XRF, however, the function describing the distribution of
primary generated x rays is an exponential which is less commonly used to approximate the primary x-ray depth
distribution function,-¢(z), in electron probe microanalysis (EPMA).

Géhler and Hanisch” describe a solution for ¢(z) models which have a kje=%2% 4 kyze—kez (linear— exponential)
dependence.®® They did not include the solution for the kyze~*2% term, however, so their solution is equivalent to the
solution of de Boer.

The two functional forms most commonly used to describe ¢(z) in EPMA which are also applicable to film systems
are the modified-gaussian model of Packwood and Brown!® and the parabolic model of Pouchou and Pichoir
(PAP).1112 Any treatment of fluorescence in thin film EPMA would have to consider these functional forms.

In this paper I develop the equations describing the total emitted characteristic x-ray fluorescence intensity for all
geometries in a multilayer system and evaluate the resultant triple integral exactly in the case of the parabolic PAP and
linear-exponential models and by numerical methods in the case of the modified—gaussian model. The solution for the
modified-gaussian model is general and can be used for any functional form for #(z). The solution for the
linear—exponential models is shown to be a subset of the solution for the parabolic PAP model.

Fluorescence in o Multilayer Film System

There are n? possible exciter layer— excited layer fluorescence interactions in an n-layer film system. Only three
three basic geometries are necessary, however, to account for all of these interactions:

Case A) The exciting element is in a layer below the excited element. Only upward directed primary radiation need
be considered in the calculation of the fluorescence intensity.

Case B) The exciting and excited element are in the same layer. If both elements are in the substrate, the equations
are a subset of the general solution (Case B'). Case B’ includes the bulk specimen fluorescence correction.
Both upward and downward directed primary radiation are included in the calculations.

Case C) The exciter element is above the excited element; only downward directed primary radiation is considered.
If the excited element is in the substrate, the solution is a simplified form of the general case (Case C')

I will use case A to illustrate in detail the derivation of the characteristic x-ray fluorescence intensity; the derivations for
the other cases are analogous.

Figure 1 shows the geometry of the generation of characteristic x-ray fluorescence in a multi-layered film system for
case A, The z and y directions (plane of the surface of the specimen) are assumed to be of infinite dimensions and each
layer homogeneous in composition. It is desired to find the total emitted characteristic fluorescence intensity, I}:i in the
direction 9 toward a detector with solid angle 01/47 and detection efficiency P. (/47 P cancels when the specimen
intensity is divided by the standard intensity.) The secondary A k-line x rays (Ax) may result from fluorescence by
several j-line x-rays of elements B (B;) in any of the layers or substrate.

In the particular case illustrated in Figure 1, primary B; x rays originating from point P; in a deep layer b excite
secondary Ay x rays at point P, in a layer a nearer the surface. The thickness of a layer 7 is t;, The mass absorption
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coefficient of primary B; radiation in the layer i is denoted by p; and the mass absorption coefficient of the A
secondary radiation in layer ¢ times the cosecant of the x-ray takeoff angle, 1, is designated by x;.
I}:" is calculated after setting up the triple integral in the usual manner (e.g., Armstrong*) by
k

i) integrating over

a) all depths z of the production of Bj; x rays,
b) all angles 8 of emission of the Bj x rays, and
c) all depths s of possible excitation of Aj x rays;

ii) multiplying by

1
a) a term g = edtmacy 7XI , accounting for x-ray absorption in the a — 1 overlayers, and
b) a term D' which contains several constants:*

r_ 1 ATA — 1 0 .
D = ECA/‘BJ T“’AAPAA GP ) (1)
where

1) C4 is the weight fraction of element A in the layer a;
2) p‘éi is the mass absorption coefficient of B; radiation in pure element 4;

3) T4, is the absorption jump ratio at the k-absorption edge and '—‘:f——l is a generalized notation for the ratio of
Ay

ionizing absorptions to total absorptions;
4) wy, is the effective fluorescence yield of the k-shell; and
5) pa, is the relative weight of the Ay line of interest

iii) and finally summing over all lines j of all elements B in all layers { capable of exciting Ax x rays. Thus,
', ' &y L ba—1 '
I? = ¢330 /-5 /_ /_ Fj(2,8,5)ds dBdz 2)
B ; z=6y_y JB=n[2 Je=£a

where the integrand FIIB,- can be found by following the paths of primary and secondary x rays:

FIIB,-(Z) B, _,) — Ig:(z) tanﬂe_[“"(s"“_z)_z::::—l #itilsecﬂe—[pg(l—ﬁg)secﬁ+x¢(l—6,,_1)]. (3)
The depth distribution of generated primary B; x rays in the specimen, I (z), is related to the ¢g’j(z) distribution by
)
() = 22 Eo)éZ
Pa; (2) = A_BZB;“’B,'PB;‘QB;( 0)¢B,~ () (4)

electron beam

Aj
P
z2=06,=0
layer 1 / t:l 5 °
layer 2 / t‘L !
s : / &,
: : —.
z | dsF layer a ;’/Pz to 5 !
: B / :
bi_
layer 1 / t; '
A iy
: 8y
dzaL layer b 4P, )ﬂ t}, P !
: / b
substrate

FIG. 1.- - Characteristic x-ray fluorescence in a multi-layer specimen.
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where Qp,(Ep) is the ionization cross section of the j-shell at the energy Eg, zp; is the number of electrons in the filled
j-shell, and Ap is the atomic weight of B.

The function G;g’, is defined here by

1 _ F’Bj(z,ﬂ’ 5) -
GBJ-(Z)ﬂy 3) - %ZB,&JBJ-?B’.QBJ.(E()) (a)

§0

G;B,- (2,B,8) = ¢%(2) tanﬁe—[m(b'b—l—Z)-Z?::_l piti) sech ,—[pa(s—6a) secAtxa(e~ba1)] (6)
2

The integral limits and integrand G'B.(z,ﬁ, s) in Equations 2 and 6 are specific to each case of exciter layer—excited
layer interaction and the evaluation of the triple integral has different solutions for each case.

We will see that the triple integral for a particular case cannot always be evaluated exactly for all functional forms of
#(z). The integrals with respect to s and 8, however, can always be resolved exactly in terms of the exponential-integral
function. I therefore introduce here the function ¥ (z)

Gs, = / #(2)- Y (2)dz 7
with
Y(z) = /ﬁ/;f(z,ﬁ,a)-dsdﬁ. (8)

Evaluation of the Double Integral Y (z)

After rearranging and combining terms of the same variable in Equation 6, Y (z) for case A can be written
x a ba—
Y(Z) - Y(Z)T — / tanﬁe_[“"(““_‘)_zi::—l yiti]secf dﬂ/ 1 e—[#n('—5¢)5°°ﬁ+Xﬂ("6¢—l)] ds. (9)
/2 a

Y (2)1 indicates that only upward directed B; primary radiation need be considered.

1. Evaluation of the Integral With Respect to s
The integral with respect to s in Equation 9 is of the form [, c;e~2*t°3ds and is easily evaluated

Y@ = - [ : sin felms-mbiat DR, i) S__::;ﬁ+x a4
/2 a a
~xate [T o (Boz—ppbp_r+3 o t) mh)!ﬂﬁi
+e ./;/2 sin fe 1 PRy dg. (10)

2. Evaluation of the Integral With Respect to 8

Both of the definite integrals in Equation 10 are of the form
secf

L
H = cisech T sinAdB. 11
(e1,¢2,€3) /«/ze c2secB T o3 sin Adf (11)
This type integral can be evaluated with the substitution z = ¢, sec 3
- SLy

] 1 —¢3 pt _flg, [TGates ga
H(cy,c2,¢3) = —[/ ez dz+e EL’/ ¢ du]. (12)

3 |Jee = . u

where the second integral has been reduced to the same form as the first with the substitution u = z + cs.
Integrals of the form
=
/ e~t/tdt
—o0

are defined as the exponential-integral function and are designated Ei(z). For z # 0, Ei(z) can be represented by the
series expansion

oo Zk
Bi(z) = y+hfabs(z)]+ Y =0, [2#0) (13)
k=1 :
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where v = 0.5772158... is Euler’s constant.!3 The evaluation of Equation 11 is thus
1 . —Sley .
H(ciyez,63) = — |Ei(—¢;) — e” @™ Ej (—c1 + c—l-c;;)]
€3 C2

and Y (z) for case A is

1 . arz . . .
Y(z)1 = X_ [—El(f1z+g1) — gt1zth [Ei( f22+g2) — Ei( fo2+93)] + eb’El(f1z+g4)]
with
a1 = Xepy 91 = pbp-1 — 3 piti — tats
by = Ef(/‘b6b—1 = Y Biti) — Xata 92 = —(ppbp-1 — Eﬂit:’)(ﬁf -1)
by = —Xata 93 =92 + (Xa — Ha)ta
h=—m 94 = mpbp_1 — 3 pit;

fa=m(%e - 1).

The summations in the terms b; and g, — g4 are over the i layers between layers b and a.
Solutions for the other geometries are:

Case B.
Y(:) = Y +Y(2)]
with
Y(2) = xi [-Eilfiztg1) + €55 {Bilfazt 02) - 12}
Yzl = Xi e Ei( faztgs) - e*% {Ei( fyztg4) + r1}]
where

@ =-Xa S1= -l 91 = Maba—1

bl = Xuau—l fl =Xa—Ha 2= (_Xa + #u)&:—l

by = ~Xata f3=ta 93 = —Haba
fa=Xat ta gs= _(Xn+lla)6a

and r; and r; have the values
1'1=].n(1+ﬁ) and r; = ln(abs[l—ﬁ]).

Case B'.

Y()1 +Y(2)| = Xi [—Ei(f1z+g1) + enzth (Bi(foztg2) + 11— 1'2)] .

For bulk specimens b; = g; = g, = 0 in Equation 19.

Case C.
1 , . . .
Y(z)| = X_ [—Ez(flz-}-gl) + er#th (Ei(frztg2) — Ei(fyz4g3)] + eb’Ez(flz+ 94)]
a
with
ay = Zep g1 = —(usbp + 3 wit;)
by = Ze(mbs + Tpti) g2 = —(my + T piti)(%2 4+ 1)
by = —Xala 93 =92 — (Xa + Ha)ta
fi=m 94 = — (0 + T ptiti) — pata
fr= (%2 +1).
Case C.

Y(z)| = Xi[_Ei(flz+gl)+e°l=+blEi(f2z+gz)].
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3. Evaluation of the Integral with Respect to 2
The triple integral for case A is now given by

&
Gp; = ¢5,(2) x ;(1— [—Ei(f12+gl) — e 50 [Ei( f,244,) — Ei(f22+93)] + eb’Ei(f1z+g4)] dz. (22)

by

GBp, can be evaluated exactly (in terms of the exponential-integral function) when ¢(z) has certain functional forms
including exponential, polynomial and linear—exponential. For such ¢(z) models, Equation 22 can be written as linear
combinations of integrals of the form

[, z"e’Ei(fz+g)dz and [, z"e**t*Ei(fz+g)dz ; n=0,1,2.

3a. Indefinite integrals of the form s, = [ z"e"Ei(fz+g)dz
The indefinite integrals are found by integrating by parts:

m = /z"ebEi(fz+g)dz=

where u = fz+4g; Ty, is given by

(n—+f;_f7:ﬁ [ Ei(u) —e“En(w)] T+ C, n=0,1,2... (23)

i n!
To=0 and Tn=2m'(%)'8n_” forn=1,2,... )
r=

and E,(u) denotes the exponential-polynomial
nt uﬂ—f
En(u) = Z( 1y —.

r=0

Equation 23 evaluated at u = 0 (z = ~g/f) contains terms of 0"+1Ei(0) (Ei(0) is undefined). With Equation 13 and
I’Hospital’s rule, these terms can be shown to be equal to zero. Thus,

. eb(-1)tint
ll_l;[(l)sn = W—Tn+c (24)
where T, has the same values as in Equation 23.
3b. Integrals of the form s, = [ z”e****Ei(fz+g)dz
The indefinite integrals are found by integrating by parts:
et a a
= / e for )z = S [e?"En(?u)Ei(u) — (~1)"nlEi [(? + l)u] - T;] +C (25)
where u = fz+g and T, is given by
T(; =0 and
T'_Z (§+1)u 1) E [( 1)] artt n—' f 1,2.
n - _le ( ) +f) r—-1 +1)u —’7"1+b(n—1‘)!1‘! f,.nr! or n =

Equation 25 evaluated at u = 0 (z = —g/f) contains multiple terms of Ei(0). With Equation 13 and I’'Hospital’s rule
s,, can be shown to have finite values as u — 0. Thus,

z294b

lms, = S [( —1)atin(% +1) - T] (26)
now with
Ty=0 d T—Z( 1) (—— —) o “"“—-’1!—(2)" forn=1,2
o=%Y an ey e R 2 A

Ezact Solutions for Certain ¢(z) Models
The functions S,(61,82,b, f,¢) and S, (1,62, a,b, f,g) are defined here by

62
Sul(b1, 62, f,9) = /5 P Ei( fo+g)dz = 5,8 (27)
1
and

' b2 '
Sn(611621 a,b, f,y)= A z"e°‘+bEi(fz+g)dz = ‘;n!g:' (28)
1
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1. Parabolic PAP ¢(z) Model
The parabolic PAP model is given by

#(z) = A1(z — Rm)* + By for 2 < R,
¢(z) = Ay(z — Rz)? z> R.. (29)

The integral with respect to z for case A can now be expressed as
&y 1
Gp; = ./; (d22® + dyz + do) % o [—Ei(flz+gl) — e®1*b1 (Bi( fo24 g3) — Ei( faztga)] + € Ei(f1z+g-1)] dz  (30)
-1 a
with

dg = Al, dl = —ZAng, and do = R?, + B1 for 2 S Rc
dg = Az, d] = —2A2R:, and do = RZ: for z > R..

The integral Gp; is expressed in terms of S, and S,, for case A as

2
GB,- = Z d‘n [—Sn(ab-la 66) 01 flv gl) = S:;(é-b—l: 66: a, b17 f21 92)+5;(6b—11 651 ai, bla f2a 93)+Sn(6b—1; 6b1 b21 fl: 94)] -(31)

n=0

This is an exact solution of the triple integral G, in terms of the exponential-integral function. Solutions for cases B
and C are analogous.

2. Heinrich Exponential Model
The exponential model of Heinrich is given by

#(z) = afeP* + (1- oz)ﬂzze'ﬁz (32)

so Gp; can be expressed in terms of S, by

1
GB,' = z dn ¢ [_S;(6b—1,6b1 _.Ba 07 fl) gl) = S:;(&b—l’ 66,“1 = ﬂ; bl) f21 92) (33)

n=0
+ S:,(6b—11 66) a; — .By bla f2) 93) + S;(é-b—lv 661 _.B: b2’ fh 94)]
with d; = (1 — a)B? and dp = of.

3. PAP Simplified Exponential Model
Gp; for the PAP simplified exponential model,

$(2) = Ae™®* + (Bz + ¢o — A)e P2, (34)
can be expressed in terms of the function S, in a similar manner.
Solution for Modified Gaussian ¢(z) Models
When the x-ray depth distribution function ¢(z) is a modified-gaussian,

#(2) = 106" — (v0 - go)e=*~F",

the integrals in equations of type 22 are of the form

/ e_(bZ'*'l:)2 Ei(fnz +gm)dz

which cannot be solved in closed form. This type integral can be easily approximated, however, with numerical
integration techniques.

Simpson’s Rule of numerical integration for n intervals requires evaluating the integrand at the integral limits and at
2n-1 interior points. Evaluation of the integrand for the interior points poses no problems, but when a boundary of

layer a coincides with a boundary of layer b for any geometry, some of the Ei function terms in equations of type 22 may
contain zero argument.

Case A. If there are no intervening layers between layers a and b, then the summation terms in Equation 15 are
eliminated and the arguments of the exponential-integral terms Ei(fz+g2) and Ei(fiz+g4) are both 0. Y'(z)7 at the
layer a-layer b boundary, however, now has the simplified form

- _ T Hata sccf secfl ~Xata /” H %
Y(a) -/1r/2 sin e HasecB+xa bte x/2 Smﬁua secf+xa 4. (35)
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with solution

1 . .
() = - [Bil) + ¢ {Bilez) - )] (36)
where b; = —Xala, g1 = —Hala, a0nd g2 = (Xa — Ha)ta-

The arguments of the Ei functions in Equation 36 are independent of z and non-zero. For the other cases:

Case B. At the upper interval endpoint

1 . .
Y(2)| = - [eb‘Ez(gl) — Ei(g2) + 1‘1] (37)
where b; = —Xata, 91 = —Hata, and g2 = —(Xa + Ka)la-

Case B at the lower interval endpoint is equivalent to case A.

Cases A’, C' and Bulk Specimens. These geometries are equivalent. The Ei(0) terms occur at the layer a boundary
nearest the specimen surface.

V() = L (38)

a
Case C. This is equivalent to case B downward directed radiation.

Accuracy of Numerical Integration

The choice of the number of numerical integration intervals for a desired accuracy can be made with the aid of the
exact solution of the triple integral, Gp;, derived for the parabolic PAP model. A hypothetical sample of a 300 pg/cm?
film of gallium arsenide (GaAs) on GaAs substrate was modeled. The operating potential was 30 keV and the takeoff
angle, 1, was 40 deg for the calculations. The mass absorption coefficients are those of Heinrich.!* Integration was done
with the exact formula (Equation 31 for case A, etc.) and with Simpson’s rule for numerical integration (Equation 22
for case A, etc.) with the number of Simpson intervals variable. Four exciter-excited layer fluorescence geometries are
present in this system. The results are listed in Table 1.

For better than 1% accuracy only 4 Simpson intervals (2n+1=9 evaluations of equations of type 15-21 and 36-38) are

needed for the calculation of the fluorescence of Ga when As is in the film. When the exciting element As is in the
substrate, 4-8 intervals are needed.

The k-ratio Equation for Thin Film Microanalysis

The k-ratio for A radiation is (neglecting continuum fluorescence):

I"p +Il’p
P f
ka, = —‘*I,A Ao (39)

Pa,

For a layer containing A extending from §,_; to 8, in a multilayer film system this is (from Equations 1-6)

ba . ra,~1 . 4, 28; @5;(Eo)
L Wihge f&,_l ¢:1P,‘(Z)e Xedz + %EB Zj GB,’I"%,, r;k CBZ'Q‘,A" QAk(E'o_ijjpB;’wAth
4, = 9Ca

Wane I3 84, (2)ehraz
Table 1. - - Evaluation of the triple integral Gp; of Equation 31 by exact and

numerical integration for the hypothetical sample described in the text.

Gp; x 10°
Integration Method 1x1 1x2 2x1 | 2x2
exact (Equation 31) 0.3743 | 0.3942 | 1.708 | 4.272
numerical, n=2 intervals | 0.3738 | 0.4099 | 1.710 | 4.252
» n=4 » 0.3741 | 0.3980 | 1.708 | 4.268
» n=~6 ? 0.3742 | 0.3959 | 1.708 | 4.270
» n==8 » 0.3742 | 0.3951 | 1.708 | 4.271

1x1=Fluorescence of Ga K« in the film by As Ka in the film
1x2=Fluorescence of Ga Ka in the film by As Ka in the substrate
2x1=Fluorescence of Ga Ka in the substrate by As Ka in the film

2x2=Flucrescence of Ga Ka in the substrate by As Ka in the substrate
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wa,,B; represents the effective fluorescence yield of A radiation after ionization by B; x-rays which may differ from the
fluorescence yield wy, . after electron ionization (Coster-Kronig transitions may differ). The transition probability, p4,,
cancels in Equation 40. Because the B; and A primary intensities are implicitly contained in this equation, the
calculation of K’ —+ L and L — K fluorescences are simplified as in the method of Henoc et al.!® This equation is
strictly applicable, however, only to ¢(z) models in which the primary x-ray intensity is a parameter of the model.%11:16
Alternatively, a method based on Reed’s!” fluorescence correction procedure can be used. For this method we need

an approximation for the ratio of generated (unattenuated) primary intensities of B; and A x rays in the specimen.
Reed’s approximation is

5 _ Cowhps, daUs — 1T )
I;ﬁh Ca wﬁ pa, 4B (UA,‘ - 1)1'67 !

where Up; and Uy, are the overvoltage ratios for B; and A, radiation, and Py is a factor accounting for the ratio of
primary intensities when B; and A, are from different shells. This formula is for bulk specimens. For thin film
specimens we can assume B; and A intensities from theoretical bulk specimens having the same ¢(z) distributions as
for the thin film specimen. From Equation 4 the intensity for the theoretical bulk B; radiation is

e = CB Eo) [~ ¢%.(2)d 42
be; = 4 2BiwBiPB;Qn;(Fo) | ¢F(2)dz (42)

with a similar equation for the A; x-ray intensity. Multiplying the numerator and denominator of the second term of

equation 40 by the B; and A, theoretical intensities of Equation 42 and substituting Reed’s approximation of Equation
41 we obtain

1 4 Tap-1 a, (Us )T [T 6 (2)de
\ fb‘d“ . ¢:‘Pk (z)exedz 7LB Ej GB,-#B, _,.ik_CBwB,‘PBjT: (UA:..l)l.u Py fom 4>g'j(2)dz
Ay = gCA == —_A LA

Jo° ¢4, (2)e " Andz Jo° ¢4, (2)e A dz

Reed’s method does not account for differing effective fluorescence yields from x-ray or electron excitation.

Conclusion

Exact equations for the calculation of the characteristic x-ray fluorescence intensity in homogeneous thin film
systems were derived. The equations were substituted into the k-ratio equation showing that the fluorescence correction
for thin film systems can be calculated directly without the need to use approximations for the ratio of generated
intensities. The equations in this paper and the iteration procedure described in a previous paper!® were incorporated
into a computer program to calculate the compositions of thin film systems from experimental k-ratio data.
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